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Abstract We propose a silicon polarization-diversity coherent receiver for wavelength-multiplexing trans-

mission without using the large-footprint arrayed waveguide grating (AWG). We have integrated our proposed

coherent receiver on the silicon-on-insulator (SOI) platform for high-capacity transmission. In the proposed

coherent receiver, high-frequency photocurrent signals from other wavelengths are suppressed by electri-

cal low-pass filters. Moreover, the signal-signal beat interference (SSBI) generated from each wavelength

is eliminated by the balanced detection. These two features lend to the proposed coherent receiver being

free of the mm-scale AWG. We have demonstrated our proposed coherent receiver to detect a 1.12-Tb/s

wavelength-division-multiplexed and polarization-division-multiplexed 16-ary quadrature amplitude modula-

tion (PDM-16-QAM) signal. The compact footprint of the silicon chip promises small-form-factor receivers

for future ultra-high-capacity coherent communication systems that require a high integration level and low

fabrication cost.

Keywords silicon photonics, optical receivers, coherent communication, wavelength-division-multiplexing

(WDM), polarization-division-multiplexing (PDM)

1 Introduction

Optical transmission systems advance with higher spectral efficiencies, higher data rates, and simulta-
neously lower costs [1–12]. In the past decades, wavelength-division and polarization-division multi-
plexing techniques combined with advanced optical modulation formats have enabled ultra-high spec-
tral efficiencies and data rates. Coherent optical transmission is a key technology for high-capacity
long-haul communications with channel data rates at 100 Gb/s and beyond [3, 13–20]. Polarization-
division-multiplexed 16-quadrature amplitude modulation (16-QAM) has been utilized in the current
200/400-Gb/s networks [19, 21, 22].

To lower the cost, footprint, and power consumption, the silicon-on-insulator platform is promising for
integrated coherent transceivers because of its high refractive index contrast and compatibility with ger-
manium epitaxy growth and implantation. Conventionally, a dual-polarization coherent receiver consists
of a number of optical components, such as high-speed photodetectors (PDs) [23], edge couplers [24],
polarization splitters and rotators (PSRs) [25,26], and 90◦ optical hybrids. To further increase the trans-
mission capacity, recent technological approaches include: (1) advanced modulation formats, such as
32-QAM [27–29], 64-QAM [30–32]; (2) large bandwidth photodetectors, e.g., 50-GHz germanium PD
(GePD) [33], 67-GHz graphene based-PD [34] and beyond. They are exploited and implemented to
demonstrate a high bit rate on a single channel. On the other hand, the wavelength-division-multiplexing
(WDM) technology can be utilized to scale the number of channels in addition to the polarization-division-
multiplexing (PDM) method. Therefore, multiple micro-ring resonators (MRRs) or an array waveguide
grating (AWG) for separating the lights of individual wavelengths from the bus waveguide are essential
optical components for the WDM systems [35, 36]. However, for dense wavelength division multiplex-
ing (DWDM) communication systems, a large number of MRRs or a centimeter-level 50-GHz-spacing
AWG [37–39] are required, which introduce additional power consumption and hardly improve the inte-
gration level and the subsequent co-packaging process. It is noted that if signals on several wavelengths
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Figure 1 (Color online) (a) Schematic diagram of the beating effect between the LO and WDM signals in an ideal PD. Inset

(i) and (ii): the mixing between the LO and signals on single wavelength and five wavelengths, respectively. SSBIs of different

frequencies superimpose on the signals of the corresponding frequencies. (b) The hybrid and balanced detection of DWDM signals

in our proposed coherent receiver (taking wavelength1 as the CUT). Only signals below about 50 GHz are detected because of the

bandwidth limits of GePD, probes, and cables.

are hybridized with the local oscillator (LO) light in a PD, due to the beating effect the photocurrent
signals are shifted to their frequency differences from the LO light. Therefore, low-pass filters are required
to filter out the photocurrents at high frequencies, and the wavelength of the signal to be demodulated
can be switched by changing the wavelength of LO light, thus saving the considerable space required for
several micro-ring resonators or AWGs.

In this paper, we present the coherent detection of a 1.12-Tb/s signal using an integrated DWDM and
PDM silicon coherent receiver. The proposed coherent receiver achieves coherent detection of DWDM-
PDM signal without wavelength demultiplexing devices at the cost of lower received signal power of
each hybrid. Low-pass filters are used to filter out the high-frequency noise generated by mixing the LO
with signals at different wavelengths from the LO in the photocurrent. The DWDM-PDM signals are
split and input into ten 90◦ hybrids, but only signals of the same wavelength as the LO light can be
demodulated and output. This paper is organized as follows. Section 2 describes the principle of the
proposed coherent receiver without wavelength division de-multiplexing. Section 3 presents the device
design and chip layout. Section 4 demonstrates the detection of five wavelengths of dual-polarization
28-GBaud coherent signals using a silicon receiver. Section 5 gives a conclusion and discussion on the
coherent optical transceiver.

2 Principle of the proposed coherent receiver without wavelength de-MUX

In a conventional single-wavelength optical coherent communication system, four hybridized beams of
LO (C) and signal (S) lights are injected into each PD. As illustrated in Figure 1(a)(i), the signal-signal
beat interference (SSBI) generated by the mixing between themself is superposed on the photocurrents
of the baseband signals. However, the SSBI noises and amplified spontaneous emission (ASE) noise can
be eliminated by the balanced detection shown as

I1 =
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|S|2 = |St|2 + |no|2 + 2Re (St · n∗
o) , (3)

I = I1 − I2, (4)

where S and C represent the signal and LO light, respectively. St is the original signal light without ASE
noise, namely no.

In the case of WDM coherent receivers, a wavelength demultiplexing device is necessary. A typical
AWG based on the SOI platform for a DWDM system occupies a footprint of 0.8 cm × 0.8 cm [39], which is
several times the size of a single-wavelength PDM coherent receiver. As illustrated in Figure 1(b), when
there is no AWG or MRR for wavelength demultiplexing, the LO light (C, taking λ1 as the channel-
under-test (CUT)) and the signals on five wavelengths (Sn, λ1–λ5) are mixed in the PD. The obtained
photocurrent of the baseband signal is interfered with the SSBI terms generated from the beating between
all five tones. The central frequencies of these SSBI noises are determined by the frequency differences
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between Sm and Sn. As the input signal light is wavelength division multiplexed, Eqs. (1) and (2) can
be rewritten as
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where m and n represent different wavelengths. Note that Sm (m = 1, 2, . . . , 5) are on different wave-
lengths. The second terms of (5) and (6) indicate that when n different signal channels are input into
the S port, n2 spurious responses due to self-mixing (SSBI) will be generated, based on the frequency
differences between the channels. For example, if signals on five channels with a frequency spacing of
50 GHz and a LO are the inputs, 1, 2, 3, 4, 5, 4, 3, 2, and 1 SSBIs are superposed on frequencies of
−200,−150,−100,−50, 0, +50, +100, +150, and +200 GHz, respectively, as depicted in Figure 1(a)(ii).
Similarly, the two types of noise (|S|2 and no) mentioned above can be suppressed by balanced detection:

I = I1 − I2 =

5
∑

n=1

Re (Sn · C∗) ,

Q = Q1 −Q2 =

5
∑

n=1

Im (Sn · C∗) .

(7)

According to (7), only the signal with the same wavelength as LO can be demodulated, and signals
on the other wavelengths are shifted to the high-frequency region and can be filtered out since the PD
normally has a roll-off characteristic. The dashed boxes in Figure 1(b) indicate that the photocurrents
above 100 GHz are filtered by PDs (BW3 dB ≈ 35 GHz), while the photocurrents at 50 GHz are partially
attenuated. Additional low-pass filters are required to filter out the crosstalk from photocurrent signals
around 50 GHz. Therefore, the desired photocurrent signal after the mixing of the signal light and LO
is down-converted to the baseband with the frequency spacing of DWDM. Normally there is also a small
frequency offset between the desired signal and LO, which could be estimated and eliminated in the
electrical domain by advanced DSP.

3 Structural design and fabrication

The silicon coherent receiver integrates the required silicon components for routing and interconnecting
photonics elements such as GePDs, edge couplers (ECs), and PSRs. Figures 2(a) and (b) show the block
diagram and the microscope photographs of the fabricated receiver, respectively. The receiver comprises
six edge couplers, six PSRs, ten 4 × 4 MMIs, and forty GePDs. The overall footprint of the proposed
coherent receiver is 3.87 mm × 2.8 mm. The chip was fabricated on an SOI wafer with a 220-nm top
silicon layer in the Advanced Micro Foundry (AMF, Singapore). The performances of the devices used
on the chip were tested at a wavelength of 1550 nm, with the following results. edge coupler: IL 6

2.3 dB/port, 1 × 2 MMI: IL 6 0.15 dB, Imbalance 6 0.06 dB, PSR: ILmax 6 0.25 dB, PER 6 18.5 dB,
4 × 4 MMI: IL 6 0.56 dB, Phase error 6 5◦, GePD: BW3 dB@3 V > 30 GHz, Responsivity > 0.7 A/W.

The optical signal containing five wavelengths (λ1–λ5) each with two polarizations, is coupled into
the signal port of the receiver, while five optical LO lights are coupled into the silicon chip through
the other ports. The wavelengths of five input LOs can be out of order since the wavelengths of signal
demodulated in each 90◦ hybrid are selected by the wavelengths of the input LOs. The polarization-
multiplexed signal and 45◦-polarized LO light, which can be decomposed into x- and y-polarization, are
divided and converted into transverse electric (TE) polarizations through six PSRs (one for signal, five
for LO). Two TE-polarized signal lights converted from different polarizations are respectively divided
into five beams by a 1 × 2 MMI array and then input to ten 4 × 4 MMI-based 90◦ hybrids, whose four
optical outputs are detected by four GePDs (see Figure 2(c)). We used a 1 × 2 MMI array instead of a
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Figure 2 (Color online) (a) Block diagram, (b) microscope photographs, and (c) 3D schematic of the coherent receiver using five

wavelengths, two polarizations, EC (edge coupler), PSR, MMI (multi-mode interferometer), and GePD.

1 × 5 MMI because the former has smaller dimensions, which is more advantageous in reducing the size
of the chip. The photocurrents from the four GePDs generate the in-phase and quadrature components
of one channel. In general, balanced PDs (BPDs) are required to differentiate the photocurrent signals
(I1 and I2, Q1 and Q2). However, the frequency responses of the integrated GePDs normally have slight
differences, which result in receiver-side IQ imbalance and hamper the recovered signal quality. Therefore,
in our design, we employ two separate PDs to detect the optical signals and then perform the subtraction
operation in digital signal processing (DSP). In a future iteration, we will consider investigating better
design to address the non-uniformity issue and employ the balanced photodetector configuration.

4 Experimental setup and results

Figure 3 shows a back-to-back experimental setup to demonstrate the proposed coherent receiver. The
experimental demonstration is performed by sending five 224-Gb/s PDM 16-ary quadrature amplitude
modulation (16-QAM) signals with different wavelengths into the designed coherent receiver. At the
transmitter side, a continuous-wave (CW) light from a tunable laser source (TLS) (SOUTHERN PHO-
TONICS TLS150, ∼100 kHz linewidth with an output power of 10 dBm) is boosted to 18 dBm using
an erbium-doped fiber amplifier (EDFA) and then launched into a commercial in-phase and quadrature
modulator (IQM) [6]. The IQM is driven by a 28-GBaud Nyquist 16-QAM signal from a 100 GSa/s
digital-to-analog converter (DAC) (MICRAM DAC10002).

Owing to the limited number of CW lasers, we use a wave shaper on another branch to spectrally
shape an ASE source [40, 41]. The spectrally shaped signal is combined with the modulated signal by
a 50:50 polarization-maintaining coupler to emulate the 4 (= 5 − 1) DWDM channels with 50-GHz
spacing. Then, the DWDM signal is split into two copies. A fiber delay line is used to decorrelate the
two copies. After that, a polarization beam combiner (PBC) is used to combine the two decorrelated
copies to generate a PDM signal. Figure 4 shows the optical spectrum after DWDM and PDM.

At the receiver side, the generated 5-DWDM PDM signal is amplified by the EDFA3 before being
launched into the fabricated coherent receiver. A tunable OBPF (EXFO XTM-50) is used to filter out the
ASE noise and simultaneously select the signals located at the CUT. Since we only have one four-channel
digital storage oscilloscope (DSO) (LeCroy 36Zi-A) and one four-channel RF probe array (BW3 dB >

40 GHz), we can only receive a single-polarization signal at a moment. We use two polarization controllers
(PC3 and PC4) to align the polarization states between the optical 16-QAM signal and the LO. For
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performance of 1.12 Tb/s DWDM-PDM-16QAM from Si PICs. TLS: tunable laser source, PC: polarization controller, EDFA:

erbium-doped fiber amplifier, IQM: in-phase and quadrature modulator, DAC: digital-to-analog converter, PBC: polarization beam

combiner, DSO: digital storage oscilloscope, SMF: single-mode fiber, PMF: polarization maintaining fiber.
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Figure 5 (Color online) DSP algorithms in the (a) transmitter and (b) receiver, respectively.

convenience, we input the x-polarized LO light. Owing to the presence of the PSR, this method is
equivalent to inputting 45◦-polarized light with twice the intensity. The wavelength of the LO is coarsely
aligned with that of the CUT. To achieve larger output powers from the 90◦ hybrids, the optical power
of LO is set to 10 dBm. Four Bias-Tees supply the −2-V bias voltages for the four on-chip GePDs. The
received optical signals are converted to electrical signals by optical to electrical (O/E) conversion and
then filtered to remove the high-frequency components to avoid spectral aliasing. Finally, the obtained
electrical is captured by an 80-GSa/s DSO. Finally, the obtained signals are processed by offline DSP.

Figure 5 presents the utilized DSP algorithms at the transmitter and receiver. At the transmitter,
the binary data is mapped to 16-QAM symbols, the synchronization and training sequences are added
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at the head of the payload, and the signal pulse is shaped by a root-raised cosine (RRC) filter with a
roll-off factor of 0.01. Pre-emphasis is implemented to compensate for the imperfect frequency response
of the transmitter-side components. After being resampled to 100 GSa/s, the signals are clipped to
suppress the peak-to-power ratio for fully utilizing the dynamic range of the DAC. On the receiver side,
the function of BPD is achieved in DSP. Since the responsivities (R) of the fabricated GePDs are not
identical, we measure the average amplitudes of the four photocurrents and multiply them by four factors
(a, b, c, and d) to keep them balanced. After frequency offset compensation (FOC) and synchronization,
the feedforward equalizer (FFE) is utilized to mitigate inter-symbol interference (ISI). The carrier phase
recovery is realized by using a blind phase search (BPS) algorithm. Then, we use a post filter to minimize
the influence of the noise enhancement effect of the FFE and the maximum likelihood sequence detection
(MLSD) is employed for symbol recovery. After de-mapping, the bit error ratio (BER) is calculated.

After obtaining the signal of x-polarisation for wavelength λ1, we move the radio frequency (RF)
probe array to the pads corresponding to the y-polarisation and align the polarization state of LO to
y-polarization to sample the y-polarized signal. We then switch the wavelengths of the output lights from
two TSLs to λ2, change the waveshaper setting to suppress the light on the next wavelength λ2, and
repeat the dual polarization data sampling process. After ten rounds of data acquisition, we obtain the
data of the ten channels of the 5-DWDM PDM 16-QAM optical communication system.

For the x- and y-polarization, the output powers of the EDFA3, as shown in Figure 3, are 5.9 and
5.6 dBm, respectively. The BERs of ten channels are calculated by error counting and shown in Figure 6.
After maximum likelihood estimation (MLSE), the BERs of all ten channels are below the 7% hard-
decision forward error correction (HD-FEC) threshold of 3.8 × 10−3. The BERs of the x-polarization
channels are slightly better than that of the y-polarization channels because the insertion loss of the
fabricated PSR for the TE mode is smaller than that of the transverse magnetic (TM) mode, and the
TE-mode signals propagate through fewer silicon waveguide crossings in the receiver. Figure 7 provides
ten constellation diagrams of the recovered DWDM-PDM 16-QAM signals. Thus, we achieve a nominal
aggregate net data rate of 1.016-Tb/s (28 GBaud × 4 bit per symbol × five wavelengths × 2 polarizations
× 0.971 (frame redundancy) / 1.07 (7% FEC overhead) = 1.016 Tb/s).

Table 1 compares the chip performance of our scheme with several other receivers using AWG [42–45].
Since the channel spacings are different and the size of AWG is inversely proportional to the channel
spacing [46], we have to consider the channel spacing of WDM for fairness. It can be seen that our
proposed coherent receiver can establish more channels within the same size and wavelength range,
resulting in a higher total communication capacity.

5 Conclusions and discussion

In conclusion, we have proposed and demonstrated a 1.12-Tb/s silicon-integrated coherent receiver for
DWDM and PDM transmission. In the proposed receiver, the signal light on two polarizations and five
wavelengths is divided by a PSR and a 1 × 2 MMI array into ten beams, and they are hybridized with
the corresponding LO light in different 4 × 4 MMIs, respectively. As the light is mixed with the LO on
the same wavelength, the signals of other wavelengths are shifted to high frequencies due to the beating
effect and can be filtered out using an electrical low-pass filter. Compared with the conventional DWDM
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Figure 7 (Color online) Recovered DWDM-PDM 16-QAM (a–e) x- and (f–j) y-constellations at the 50-GHz (0.4-nm) wavelength

spacing with ASE noise.

Table 1 Performance of various silicon WDM receiver

Ref.
Material Size Number of Channel spacing Footprint×spacing/channel

of chip/AWG (mm2) channels (GHz) (mm2×GHz/channel)

[42] InP 19.8 4 185 916

[43] InP/Silica >469 8 25 >1465

[44], not coherent Silica <126 4 800 <25200

[45], not coherent silicon/SiN 32.5 40 200 162.5

This work Silicon 10.8 5 50 108

coherent receiver, a large footprint of MRRs or AWG is eliminated, reducing the average footprint and
spectrum to about 108 mm2· GHz/channel. In the experiment, the 1.12-Tb/s 16-QAM 28-GBaud signals
on five wavelengths and two polarizations are successfully recovered, with all BERs below the 7% HD-
FEC threshold of 3.8 × 10−3. This solution saves a large amount of chip area at the cost of degraded
signal-to-noise ratio, requiring 6.9 dB higher signal optical power to achieve the same SNR. It is suitable
for high-capacity short-range optical communication systems with high integration-level requirements.
The footprint required for a DWDM-PDM coherent receiver can be further reduced by a more compact
layout or by reducing the sizes of the metal pads to improve the integration of the coherent receiver chip.
This approach is scalable to higher rates, e.g., 2 Tb/s or higher, by increasing the baud rate and the
number of channels.
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